Product Specifications:
Item# 7005 : Recombinant Human APOBEC3G (CEM15, E.coli)
Concentration: See vial
Mass/vial: 100ug
Diluent: PBS, 30% Glycerol 0.1% Sarcosyl
Purity: >95%
Stabilizer: None
Preservative: None
Storage: -75°C
Physical State: Frozen Liquid
Stability: 6 Months at -85°C
Aplications: Vif Binding Assays.
Description: Produced in the E.coli Expression System as a hexa-His fusion protein. Thrombin cleavage site at N-terminus may be used to derive CEM15 free of hexa-His sequence.
Approximate mol.wt: 44kD.
Purification: This protein is purified by preparative SDS-PAGE, reduced, to >95% purity as determined by SDS-PAGE, reduced.
Specificity: This protein binds to anti-CEM15 murine monoclonal antibodies and rabbit polyclonal antibodies as determined by Elisa and Western Elisa.
Biological Activity: Binds HIV-1 vif as determined by ELISA and Western Blot, and complexes with native vif in HIV infected cells.
Application and Instructions for use
Research articles related to Recombinant Human APOBEC3G
APOBEC3G is a cytidine deaminase with two homologous domains and restricts retroelements and HIV-1. APOBEC3G deaminates single-stranded DNAs via its C-terminal domain, whereas the N-terminal domain is considered non-catalytic. Although APOBEC3G is known to bind RNAs, APOBEC3G-mediated RNA editing has not been observed. We recently discovered RNA editing by the single-domain enzyme APOBEC3A in innate immune cells. To determine if APOBEC3G is capable of RNA editing, we transiently expressed APOBEC3G in the HEK293T cell line and performed transcriptome-wide RNA sequencing. We show that APOBEC3G causes site-specific C-to-U editing of mRNAs from over 600 genes. The edited cytidines are often flanked by inverted repeats, but are largely distinct from those deaminated by APOBEC3A. We verified protein-recoding RNA editing of selected genes including several that are known to be involved in HIV-1 infectivity. APOBEC3G co-purifies with highly edited mRNA substrates. We find that conserved catalytic residues in both cytidine deaminase domains are required for RNA editing. Our findings demonstrate the novel RNA editing function of APOBEC3G and suggest a role for the N-terminal domain in RNA editing. Recombinant human APOBEC3G contains highly-edited mRNAs